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Variational Approximationl to the Diffraction
by Circular and Elliptical Apertures

by
Chaang Huang
Cruft Lakoratory, Harvard University

Cambridge, Massachuseits

Abstract

Different methods are reviewed briefly for attacking the problem of
the diffraction of a plane electromagnetic wave by a circular aperture in
a plane screen which is infinitestmally thin and perfectly conducting.
Specifically, the variational method derived by Levine and Schwinger has
been used to evaluate the transmission .oefficient of circular and ellipti-
cal apertures. For the circular aperture, a high-order vector trial func-
tion with undetermined frequency-dependent coefficients is chosen. By
using the stationary property of the expression for the transmission coef-
ficient, equations for the undeterminec coefficients are derived. These
equations are solved to give a first-order approximation of the transmie-
sion coefficient, and the numerical values are compared ith previous
results. For elliptical apzsrtures, a zeroth-order approximation of the
transmission coefficient is evaluated using a one-componext triai function.
Numerical results are given for ellipses with minor-to-major-axis ratios
of 1/2 and 1/3.

- - ® e w -

Introduciion

The problem of the diffraction of electromagnetic waves by a circular
aperture in an infinite plane conducting screen has attracted the attention

of many authors. Their work is reviewed briefly in this section.

Moglie:h1 tried to work out the exact solution for the problem of dif-
fraction by a circular disk (which is the Babinetzcomplement of a circular

aperture) by expanding the rectangular components of the Hertz vector, w,
of the incident and scattered fields in series of oblate spheroidal wave func-
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tions and then imposing the boundary condition on n at the surface of the
digk to determine the unknown coefficients of the expanaion for the scat-
tered Hertz vector. His solution was inccrrcct Lecause be did not take
into consideration the singularity at the rim of the disk. This defect was
pointed out by Meixner, 3 who reconsidered the problem by expanding the
Debye potentials into series of oblate spheroidal wave functions, and later
improved his own resulf with the collaboration of Am.irejewski4 by em-
ploying the Hertz vectors. Their solution includes the compiementary
problenr; in the Babinet sense, of diffraction by a circular aperture. The
analogous exact solution to the more general problem of the elliptical disk

awaits some future study of ellipsoidal wave functions.

Although exact solutions for an arbitrarily shaped disk or aperture
are not feasible at present, a number of different formulations aie avail-
able for obtaining approximate results over specific frequency ranges.

The application of these methods to the problem of a circular disk or aper-
ture permits a comparison with the results of the exact theory and gives
some idea of the degree of accuracy to be expected from a particular
appl-oximation. It is to be emphasized, however, that the significance of

these methods lies in their applicability tc disks or apertures that are not
circular in shape.

To the extent that they are solutions of Maxwell's equations all these

formulations of the problem of diffraction

L2

suivale

nd R7Y. o sn Ti:~3é
SuLiVoeSiog, waila Sn'p‘.a.\.bb

- e~
@>=s T

o

results are desired for a particular case, however, the necessary approx-
imations give differing degrees of accuracy, depending upon the frequency
range that is of intereat and the formulation that is used. Approximations
which have proved useful in the past can be classified as follows:

1. The lowfrequency (static) approximation: The aperture or disk

is taken to be smali compared to the wavelength; ka = 2va/A<<l {wWher

[

a = characteristic dimension of the aperture or disk) .

a. Retardation is neglected, and the result gives the first few
terms in an expansion in powers of ka.

b. The incident field vectors are taken to be constant over the
small aperture or on the surface of a small disk.
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. i 3 *
Using these approximations Raylexgh,s Ta1.6 Bethe." ! and Bouwkamp 8 ’

have studied the problem of diffraction by small circular disks or aper-
tures. The results obtained by these investigators are accurate only for
frequencies which satis{y the condition ka<<1 .

2. The high-frequency (optical) approximation: The aperture or

cpre T AR \;_n;/_m

disk is taken to be large compared to the wavelength; ka>>1 . These

! approximations are of the Kirchhoff type.

a. The tangential component of the magnetic field vanishes on

VR 2t

the dark side of the conducting screen.
b. The tangential component of the electric field in the aperture

is equal to the incident electric field. |

Formulations which make use of these approximations have been dis-

4 10 11 .. s *% 12
: cussed by Stratton and Chu,  Schelkunoff,” ~ Silver and Ehrilich, and

13

Levine and Schwinger. Among these four, the analysie of Levine and
Schwinger has the advantage of a relative analytic simplicity, and is
recapitulated in a previous report,14 where its application to annular,

elliptical and rectangular apertures is worked out.

In contrast to the above methods, Levine and Schwingerl3 have derived

vector integral equations***

using dyadic Green's functions, and they have
shown how to calculate the far-zone diffracted fields and the transmission

coefficients of apertures in terms of variational principles related to the

integral equations. Thus, by choosing an appropriate trial function for either |

the fancential component oi ithe electric field in the aperture or for the. mag-
netic field on the back side of the diffracting screen, an accurate result can ‘
be obtained for the transmission coefficient without making any further

assumptions. In this way, they have computed the transmission coefficient

of a circular aperture for ncrmal incidence, using two different trial func-

tions for the tangential comnponent of the electric field in the aperture.

* Bethe's solution has been modifi-c by Bouwkamp. 9

*#Silver and Ehrlich have solved th: Aiaxwell's eonation by a Fourier oper-

ational me and obtained formu:ag iwe the near-zone fields.

***Copson” > has also derived the iais;ral equations for the diffraction of |
disks and apertures, bui since he uae:. 1 scalar Green's function, his for-

inulation is very cumbersome. !
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The first of these functions waa constructed {rom a single-component
electric field with no angular variation and with a radial dependence cor-
responding to that of the static solution. It results in a transmission coef-
ficient that is accurate only at low frequencies. The second trial function
is the complete static aperture field obtained by Bouwkamp. It gives an
improved result which is still accurate at moderately high frequencies

where the Bouwkamp solution itself is not valid.

Since these trial functions are frequency-independent, they give unsat-
isfactory answers in the middle frequencies. In this study, a frequency-
dependent trial function will be constructed for the circular aperture, and
it will be seen that a very high degree of accuracy can be obtained with
only moderate complexity. Finally, the variational procedure will be
applied to elliptical apertures using a single-component trial function anal-
agous to the first one used by Levine and Schwinger for the circular apes-
ture.

1I.
The Circular Aperture

The Stationary Expression for the Transmission Coefficient

The problem to be congidered is that of a plane electromagnetic wave
incident on an aperture S1 which perforates an infinitesimally thin, per-
fectly conducting plane screen, SZ' A rectangular coordinaie sysieia
( x,y, z) is chosen 8o that S1 and SZ lie in the plane z = 0 as shown in
Fig. 1.

The plane wave is incident in the half- space z<0 and is described by

E®(r) = & exp(ikn.7 ),

(1)

H'®S(r) = B exp(ikn-r),

where r is a position vector in space, fi is the unit propagation vector, &
and fi are unit polarization vectors, and k is the wave number. In
gaussian units the unit vectors are related by

A
e

= ix6i, and 8.8 = .0 = 1




FIG. | DIFFRACTING APERTURES !N A PLANE SCREEN =~
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The harmonic time dependence e 't is omitted here and will be omitted

throughout this repo-t.

The transmission coefficient of an aperture is defined ds the ratio of
the {ransmitted energy flux per unit aperture area to incident energy flux
per unit area. A stationary expression for this quantity has been derived

by Levine and Schwingevr;13 it is
( \

(ﬁ-{QxEn(p)exp(-ikﬁ- p)as) (ﬁ;éixE-n(p)exp (ikd- p) dS)
-1 .
t= AR =

f exE (p) ., 0')2x E_(p) as as'

where p is the position vector in the 2perture and A is the area of the
aperture. En(p) and E_n( p) are the aperture electric fields preduced
by incident plane waves with propagation vectors i and -n respectively,
both having the magnetic polarization vector h. 'l"(o)(p ,p'} is the free-
space dyadic Green's function and is given by

F(o,(pop') = (e -%VVI) exp (ik|p - p'l)
k 4r|p- o'l

where € = unit dyadic = %' + §§' .

If a plane wave is normally incident on a circular aperture of radius
2 A_A

a , then it is evident that A=7a“ . fi=2,and 8.5 =0  The symmetry

B ]

of the circular aperture permits an arbitrary polarization for the incident

wave, and it is convenient to choose h = ¥.
Furthermore, in polar coordinates the aperture will be described by

p¢ 0<pLa 0<h 2w

With these specializations, the stationary expression for the transmission

S

coefficient (2) reduces to

a 2n a 2s |

[ [ pdpdéZxE ¥ dp déZxE
. G [ [ popab2xE(eN§ [ [ pdpabixE_(p))
t-——z—lm

d d‘ ‘d ’db' QXE 0' ’ ' 'sz ’

AT s e

(2)

(3)

{4)

—_ s A S S W 0 5755 WS e
R ok A Y U KRN o . .
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-The Trial Function

Deiore choosing appropriate trial funciions for the electric fields in
the aperture, it will be worth while tc examine some general propercies
of the aperture ficlds. The fields in question are produced by a pair of
Plane waves propagating in the directions 2 and -2 with magnetic polar-
ization vectors in the same direction parallel to “he y-axis. The tangen-
tial component of the aperture field excited by the Z-directed wave can

be assumed to be separable in polar coordinates, and to be given by
ExE,(p.6) = 2x[PR (p)B(8)+BR(p)E (4] . (5)

Then, as a consequence of the symmetry of the incident waves and of
the aperture, sketched in Fig. 2, it can be seen that the two tangential

components of the aperture field associated with the £-directed wave are

#E lom-b) = B-E,(p#) = R (p) 3 ,(4) o

$-E_(pm-6) =8 E _(p.8) =-R(p) §4(6)

The second field can, therefore, be expressed in terms of the components

of the first,i.e.,

2xE_(pm-#) = 2x[B R (p) 3 (8)-BRYp) G4 . ()

1f it is assumed that the trial fields have the same ¢-dependence as the in-
cident field, then

ép(é) = cos ¢ , §¢(¢) = -sing . (8)

With (5), (7) and (8) the aperture field functions at the point (p.d) become

2 sz(P»é) = QX[aRp(P) cos ¢ - 3R¢(p) sin ¢]
(9)
2 x E_Z(Pv‘)= 2x[ ﬁRp(p) cos(w-9) + 8 Rﬂ(p) sin (z-8)]
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FIG.2 THE TANGENTIAL APERTURE ELECTR:C FIELDS OF
OPPOSITE INCIDENCE WITH PARALLEL MAGNETIC
POLARIZATION VICTORS
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so that

ZxE,(p.8) = -2xE_(p.#) = ZxE(p.6). (10}

A reasonable choice for the p -dependence of the trial field is one
which satisfies the saine boundary conditions as those satisfied by the
correct field. These conditions have been fully discussed by Meixner:16
and Bouwkaxnp17 who show that at the rim ot an aperture the tangential

compcnent of the electric field vanishes as R‘/ “

1/2

and the normal compo-
nent increases as R » where R measures the distance from the
field point to the edge. Accordingly, possible series representations

of the radial functions associated with the aperture field components are

o

1 Zn
Rp) = —L— 7o e

1-(&) n=0

a
(11)

30
o) = V1B > p )™,
n=0

where a.n . bn are undetermined coefficients.

With (8) and (11), the p - and ¢-components of the trial functions for

the aperture field are :

"
|
—
M
“.
=ﬂ~
w[e
0
o
®
°

8-Elp.¢
1-(&)% “a=0
(i2)
. << ~
6-E(p.6) =V 1-(B) b (£)%" sin ¢
7=

The corresponding rectangular components are :

[o0) @
R-E(p,8) = ———I——Fan(%)zncoszd -|/1 - (%)z an(gzn sinzé
V1 -(%)2 n=0 n=
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$-E(p.$) = [—L—— an(%)zn+v1-(%)Zibn(%)h]sinécosé
1’1-(%) n= ' n=0

(13)
At the center of the aperture these components reduce to
- 2
R E(p,$) = cos é(ao+b°) = B
{14)
¥ E(p.$) = (2, +b_) sin 6 cos ¢

But since ¢ is not defined at the origin, the rectangular components
should be independent of § when p = 0 . it is necessary, therefcre, to
require that

a = -b (15)

This condition alsc insures that V- E = 0 at che center of the aperture.

If the series are truncated so that a = 0 for n>2, bn =0 for n>1,

and the remaining coefficients are assigned the value= a, =-a,
'ao = -‘oo = 2a , the trial function reduces to
2 2
f'E(pg) = 228 cos ¢

V .2 :2

e

-Zv; ~ _o‘2 sin é

These functions constitute the low-frequency exact solution obtained

(16)
z-E(Pné)

[

by Bouwkamp. - They are frequency independent and are valid only for
ka<<l . In reference (13), these functions are used 28 a zersth-order

trial function by Levine and Schwinger.

Determination of the Coefficients in the Vector Trial Fur.ction

The vector trial function Z x E(p) that was chosen in the last section
contains undetermined frequency-dependent coefficients. These may be

chosen appropriately by using the stationary property of the expression
for the transmission coefficient. '
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if the transmission coefficient of (4) is written

12
2 2 1 (17
t = «—— Im A = - m ————,
ka’ y kal 4nl,

then the substitution of the explicit series for Z x E(p) shows at once that

a 2w

o)
I, i/Jf pdpdd §-€x E(p) =Z(a’n3:+an:)
o Yo n=0

a 2
12 =/ /r pdpdé p'dp'dé' Zx E(p)- F‘(O)(p,ﬁ;p'.é')’QXE(F')
o %
o oo
= Z [ana.Ian?;1 + anbmc:rtr,x + bnbmc::r‘:l]
n=0 m=0
where -
B: = n| —£90 (%)Zn
o Vl-(%)
~b _ 4! 2 2n .
B, = -WJ yl'\'-l \-;) ap
n p)2m
fds ds' — = cos § cos ¢’ P(gz(p.é;p',é') =C:;
5, 1/1 (EWI (8)

ab ' 1'(%_’2- 2m ,p'\2n _. (0)
cnm=-[ans- i (8)2™ (&Y% sinbcos s TV (5.6 50,01

1 V1i-&)

1-(2) e o1
-fds as' L2 (228 (232 cos g sing’ r‘°’ (p.bip'8)= C22

a

Sl F)

__,
# .
&‘ F .
AR LA

o
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cn'::: =/:15 as'Y/1 _(%)z' Vi- (El)r (B)2™E )%™ sin g sinﬂ"‘(,o‘,);(pﬁ;p'."’) =Gop
S
1

The r‘éﬁ’ are the 4v components of the free-space dyadic Green's func-
tion. With these subetitutions the scattered amplitude Ay takes the form:

&

@
a b .2
E (aan + ann )
& -1 mo
Y 4 o aa ab bb '
E z [anamcnm * z'1xlbrx1cnrr~; t bnbmc’nm ]
n=0 m=0

where the B's and C's are, in principle, known functions of the wave-
length and the size of the aperture, while the a's and b's remain to be

determined.

The procedure is to differentiate Ay with respect to each of the in-
dependent coefficientis and set -

8A 8A

& Y = ¥ -0
9av 8b
v m

Since the behavio? of the trial function at the center of the aperture
requires a_ = -b_ extremizing A _with respect to either of these coef-
L4 = y

ficients gives
o °)
aa bb
r - Ay : [2a,,Com-(am b)) Com - b Com]
m=0

[
- 32 -8 D [a,B2+v,B21  (9)
m=0

But by definition

*. . . Bl ) B e n T e i i RSN DG L AR Yl WS ) T b IR, < T i e R R 4
. -8 -
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(o o]
A = ey -k (a_B% +b_B2) (20)
mz=(
so that
[0 0)
Z[lzc b )a_-(2c2 _c2p_j=1(B2-BD). (21)
m=0

A similar treatment with respcct to a and b gives
P

¢ 1)
aa ab _ i na _
E [ZCvm\am+C'mbm] =i B' v =1,2,... (22)
m=0
2.9)
ab _igb
?[cpmam+zc“m m] = B“ p=1,2,... (23)

m=0

Equations (21), (22), and (23) constitute the linear set of algebraic
equations required to determine the a_ and bm . With these, the

transmission coefficient can be calculated tarocugh (20).

In a practical calculation the trial function must pe terminated at

some convenient value of m . The approximate transmission coeffi-
cient obtained in this way will be

N, Re[Za. B2+ Zb (24)

ms=0 m=0

where N = j + k is the order of the approximation. For a {irst-order
solution with j=1 , k = 0, the set of equations to be solved consists
only of (21) and (22) with v= 1 :

z(c:*"“-co )a+ZC

o o1 - Cor) 2y "k (B - By (25)

aa ab aa. i a .
(2C01 - COl )a°+ ?.C11 a.1 o Bl (26)

Wimw-umulnmmmum S
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These ecuations are readily solved for the coefficients a, and a;
which can be substituted-into (24). The result is

¢ gy = 328 1, 4P(a) - 20(a) + R(a) (27)
e = o3 Q%(e) - 4P (a)R (a)

Here, a = ka and

_ ~aa
P(a). = C11
Qa) = 2C22 - c,j‘,f’

) bb
R(a) = A% - C2P +Cpy

These integrals are evaluated in Appendix A. In additicn,

a
B2 = f = uaz
o
Bla' s %f = %-ﬂa.z
a
b b 1 .P ‘.."_:- z = - 1 ....A.Z
.bo ="';/ de ¢ up-"'xuc
“o

The numerical result of tu) is compared with previous results in
Fig. 3. It can be seen that the variational approximations are quite close
1
tc the exact solution | g and that t(l) provides a much higher degree of

0
accuracy than t‘ ) ; in the range 1.5€kag4.5.

A further comparison of interest can be made for small values of
ka. If the tranwsmission coefficients cbtained by the various theories are
expaaded into power series in ka , the results are :

(i) Exact Solution {due to Bouwkamps)

._4_31‘5)_[“22 (ka)? + 0.39793197 (ka)t + ...] (28)
27n”

tg =

Ao — e e el e s LDABIIND LG e d




x .8
1.6
14
1.2
t
1.0
0.8
O / t, EXACT SOLUTION DUE TO ANDREJEWSKI
19 ZEROTH VARIATIONAL APPROXIMATION
DUE TO LEVINE AND SCHWINGER
Y,
0.4 I/ 19 FIRST VARIATIONAL APPROXIMATION
p' t« KIRCHOFF APPROXIMATION
0.2
0 A

0 I 2 3 = 5 ka 6 I4 8 9 10

m
w

.3 TRANSMISSION COEFFICIENT OF CIRCULAR APERTURE FOR NORMAL
INCIDENCE OF PLANE ELECTROMAGNETIC WAVES
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(iib) Zeroth-order approximation by the variational method (du;a to
Levine and Schwinger)13

4
{9 o fﬂls%L [1+ 22 (xa)® + 0.40790023 (ka)* + ...] (29)
27w

{iii) First-order approximation by the variational method obtained
in this report

4
NSV iﬂ%L [1+ %(ka)z'-i- 0.39678912 (ka)t + .. 1 (30
27w

The third terms in the bracket show that t(l) is more accurate than
(0)
t .

II1.

The Elliptical Aperture

If the aperture in the plane screen is elliptical in shape, the general
procedure of section II is much inore difficult to apply. Either elliptic or
oblate spheroidal coordinates must be used, and the computational labor
would be greatly increased. However, considerable improvement in the
Kirchhoii result can be effected by using a single-component trial function

for the electric field in the aperture, corresponding to the original trial

fismrtbinn ~Af T aivqnn and Qﬂ‘l"rinca-. qn t‘l" (\qq—nq la_v- s aa
SIT[!OTIDT SE OS2V SJFINRZET -

. " inc ikz
For a normally incident plane wave polarized so that E = (r)=Re

inc ikz ; : i @

and H (xj=F e , the choice of trial function is

1
E(p) = R(1-p%) 2 (31)

Supstitution of this function into the stationary expression for the
transmission coefficient (4) gives

= -2wab Im 1 (32)

where

ff pdo dbp'dp' b Y1-p zf o' lp.ép $') .

T —

|
|
'!
!
j
;
]
!
1.
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With the representation

—— P YT R T ST T
-»

% dic, dk k2

(1- -%—) exp [ ikx (x-x') +iky {y-y'}],
=00 sz kz-kz

the integral can be simplified to
2x ® 2, 2
L. akil T dvaeyvé-1 I3, (kiv)
4k 3 2
° ‘o L v~
3

Zr * cos?0 ng, (kLv)
- f dv do = (34)

o ‘o L3sz-1

(0) s ot @) =
P}'Y (P,‘-P x‘) E_

where

= V(a cosO)z+(b linO)[ :

The procedure is simiiar to that developed in reference (14). Finally, by

carrying out the integration with respect to v , we find that *

2
2
1=_T-‘azb"frkL- 20 (kL) 38 35
— :o[()cos ()];3 (35)

where
F{ 1| -1 . - 1
x) = E[E ..o(Zx)-Jl(Zx)-t-(d»‘t—x-z Jo(t) dt ]
(o]

2 2x ]
Y S YA s (2x) + S,{2x) - (1+-15) [ s (that)
™ n @ 2x “o 1 ;Z o
(o]

*The first integral is related to Fu(kL) in reference (19); the second is
related to 1 Z(kL) in appendix A.
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r———
gb

1}c -1 1, 1 r
G(x) = 3 L Jo(ax) - Jl(Zx) + (-2+E) J Jo(t) dt]

(]

2x
tils- o so(z.x)-sl(zxn(%:f;l?)f So(t)dt]}
| (o]

Numerical values of the transmission coefficient are given in Fig. 4
for 0<kagl0, and b/a =1/2, 1/3. These are plotted together with the
corresponding result for the circular aperture which has been given in
reference {(13), and which can be obtained from equation (32) by putting

b/a = 1. Using the expansions

2 4 3 5 7
Fe = [3-T5tim+- - ) 113 - oree tmatam - )

(36)
2 3 5 7
G(x)=[§+-’1‘-5--i’-’;‘-b-+. .. +i[%"ﬁ-%§7’§;+1%§‘-"m+. .

in (35), a form of the transmission coefficient appropriate to small values
of ka can be obtained :

64 ,a 4 b b 2 b 4
t = o (g) (ka)" [A (Z) + A () (ka)® + A (=) {ka)®s. | ]
(37)
where Ae(g) , A;,_(-g) ’ A4(§') , . . . are functions of the sccentricity.

They are given in appendix B. With small eccentricity (37) becomes

t = -;%:—z(%)(ka)4[(l-%ez. CO+(E - el L ) (ka)

+ (5o - i%g.gée%, o ka)t e, L] (38)
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endix A

In this appendix we will sketch the method used to evaluzte the func-
tions required for the transmission coefficient of the circular aperture.

These functions are given hy {27)

P(a) = CJa)
Qa) = 2 C(ﬁa(n) - Coaib(u)
R{a) = Cgy(a) - co;b(a) + Co%b (a)

The integrals Cnm can be simplified by making use of an integral

representation and an addition theorem: the integral representation iszo

i ®©
elklﬁ--ﬁl' -1 J («R) w dw
dxlp - o 4 o
' ' (4} w -k
2 .2 -i- 0 w>k
where arg(w -k“)" = % SR

1
and R = (pzi-p'z-pr'COS(é-é'))z

-y

.-
J (WR) = 2_(2 - 5gg) T (wp) I_(wp') cos[n(é - 6]
n=
ewsle . e _ 1 fo' n = 0
waere o,n T o for n#0

With these substitutions (18) gives .
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2n a 2n 2 2n
(&) £ |-
Com = %f‘_a pdpf—i‘——— pap [ coséas [ coss' as |
(e}

b 1/1-(%)2 1-(-2—')2 Jo A

s o o a4

oo

. 118 1 8y N i 5 yeosis
[CVSM-#)“EZ r R;Tﬁ;}%‘b_uon) os{n(6-4)] i

n=
(0}
w dw

| ———= J, (wp) J (wp') ,
[ 1’«) -k " " ]

The orthogonal properties of the trigonometric functions permit the

integration with respect to ¢ and ¢' to be carried out. The result is

2 ()™ S
C:;’l f pdp — p' dp’ [Jo(wp) Jo(wp')
Vw -k* bolf1-i&y* Jof/1 - (E)*

- 2 1
+ Jy(wp) T, (wp') - ;z Y, J, (wp) I, (wp')]
By introducing the notation
2n
f (Ey* p dp

Jo (wp)

Ia = 1
on Jo 1/_1_(%')2

a A (&)Zn p dp
= _f 3, (wp)

1/1 -(&)

the integral can be written as

Qo

2 2

aa _m wdw W \fyd ca a.,a W a a.r,a ca

Coam ~ 1[ {(1'1?)[“'on Iom t1l2n IZm] +;Z[.,Ion'12n“10m'12m1}
w -k
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a 4 szo(wa) dp 2 2.3
101 =f = / a sin” 0 Jo(masin@) do0
o

2
a a -p ~0
2 - 2T 1/2(“"‘) J3/pl92) |
0 - =
00 2 | )VZ (wa)‘.{/z
. apllea)dp W2, o
IZO = = a smOJZ\wasme) de
Yo ja” - p o
n/2

r
azj 8in @ [—“-)a%lm— J) (wasind) - Jo(wasinO)] do
o

BTV o i VA 1 B
sVl toa) V2

= 12 .12 - T2 2 (e2) 322!
av &i F &¢ ~ (wa) dé (wa) b TFA

These forms for the I's are obtained by making use of Sonine's firet
finite integral®!

) 1r/2

Ji*“’ +1 {z) = =vz==- J (z sin 0) sn“*le coszv+13 ase
P v+l) J

v+l

Re p,v>-1
and its altex:nate form

®/2

(z)
J (z8in0Q) sin1 ko cosz +10 de = j*“’ v-p+l
n T VP

» Rev >-1

Had
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where 8 v (z) is a Lommel function.

When the indices p,v are half integers
these functions are defined by

z z
sp’““(z) = %sinp.w[ J“(zi/‘ z¥ J_“(z) dz - J_“(z)f z* Jp(z) dz]
o (o]

and are related to the Struve function S“(z) in accordance with the equation

s+“’_“(z) =

1 1
2r(z) P(p +3) S (=
(Z) Ml +3) S, (2)
When the integrated functiorns, I, are substituted into the expressions {or the
C's and these are combined according to equation (27), a certain amount of
algebraic manipulation yields

(o o] 2 2 2
X vde |l Tp(walltea)  Tg(ea) 2 T (wa)
P(n) - 4 -4 2 +5 3 - 1 —-3—— ;
Jo YuZk2 | (wa) (wa) (wa) k% (wa)” | )
Qo
) oxlat [ wdo 1/2(“") Lo D2 yplem) P, ale2)
Qia) = - N3 S —z -3
1/'2—2'_1(1 (wa) (wa) (wa)
2 4 @ r"z {.:0) Y 1oV T . {oa) Tz. 1020 27 2._!:;‘.2\.
R{a) = 1r4a' [ wdw w2 'yz‘"%s/z B s -3,/7.‘*3-' PR Tl
Z | (wa) {wa) (wa) k¢ {waj’
o Yw -k \

It can be seen that each of these functions is a linear combination of the
following integrals

Jl;zz‘“""’

-l: Vw -k (wa)

2
1 _f W dw J3/Z("°a)
2 .3
o k2 Vulx? ()
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1 =j_.“’_di"_ (1= "’Z fézz_‘_?.a.).
3 o Yw -k I:z (”a)3

J)/2(wa) Ty (wa)

@

I _f wdw

4 2
(e} Vw-k (wa)

The remainder of this appendix will be corncerned with evaluation cf
these integrals.

The integral I1 can e rewritten as

® .2 © , 2 a .2
Jl/z(u)dw 1 Jllz(w)dw . ,f Jllz(w)dw

(3 Vw -a) : a 1’&2-0 Jo nz-w

By making use of the integral representation23

= 1
Il_a

w/2

J“ (2) Jv(z) = %f J“*_V(chos @) cos (u-v)0 de

(o]

Re (p+v)>-1
The real part of Il becomes

Jl(chos 8) dw

.. Yo Jn l/ w -a”

24

But with the infinite integral formula

= J (ka) a=0

(o] . RN Y
Jv (wa) (" -k7) dw Zp'f‘(p.ﬂ.)
1 v-1l ' ap.+lkv-p.n vep-1t

w
v 1
Re(‘z‘z)>Re p>-1

the integration with respect to w car be carried out and the result is

ponr g T AR T A R T S e e -

Fi‘;. "

e o SIS A3 b LA i
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w2 J. ;, (20 cos @)
R - 2 [ w 1/2
el =7 ] Y3 p—
VA { Z2a cos

We now make use of the fact that when v is half of an odd integer, the
function Jv(!.) has a finite representation in terms of algebraic and trigo-
metric functions of 225’ i.e,

Jl/z(z) £ (-1;%) gsin z .

w/2
5 _ 2 ein (2ocos8)d6é _ 2 1
Then Rel; = &= [ 2a cos 0 T wa a Fi(a) ,
o
where ‘ w/2
F, la) = 2in{2a cos 2) 40
: A L_fcosT

It is evident that Fl(O) = 0 and that

/2
Fila) = [ cos (2acos 0) 40 = % J_(2a)
o

From these it foliows thai

-~

oa
~

a
F,(a) i/F'(a) da = 1"_, | J_(2a) da = ;‘I/ J (t) dt .
o o (o}

aQ

Accordingly,

1
el =
Re 1= Taa Jo(t) dt .

(o]

The imaginary part cf Il can be expressed by

e S

L aaran ik

R T T TR 7

S 00 s BT Ao b s 1 L

b A AN . 04

|
é ;
g

i



Z(z)v /2
Sv(z) = 7:1 1 / sin (zcos 0) sinzvo de
Plv+3)7(3) g
Re v >- % ;
we have
a

TR164 -23-

|
. le/z (@do /2 3, (2wcos ) dw i
mi =1 [ M - Z [ g _
a mTa
o

VaZaz
a -w

21

9

By making use of the second form of the Sonine's first finite integral

the integration with respect to w can be carried out:

s (2a cos 9)
Im1, = £ [ 4o lz,-y2 "
A ¥ 2acos®

Bui:z'Z

8/2,-1/2%) = 22 (1 - cos 2) |

Therefore the single integral can be rewritten as

/2
Im I ____Z_[ [l -cos(2acos@)] d0 _ 2 F(a)

1 wa 2acos @ waa

where

n/2 ]
F,(a) = f [1-cos(2acos6)] do
o 2cos @

Again, with FZ(O) = 0 and with the integral representation for the
Struve function

T-

F:,_(u.) :jf sin(Za cos 9) dO = 3 So(Zo.)
o
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Consequently,

7 Q 2a
F.(a) =J F) (o) da = % [ 3_(2a) da = % / 5,(t) dt,
Yo o

o

and

2a
a“[S (t) dt

2a
v [ r

= .zfﬁlj Jo(t) dt+i/ Sc(t) dt] .
o [o]

Therefore

The integral Iz can be evaluated by decomposing it into two parts:

ao

: f Jyz(ua) , P dw.f;;z(w)

24/_27 1/‘17 aozo w2-al

1 7‘1‘" J3/2(@) [_{llz(“’)

= anz o - J-l/?.(m]
Yo W =a
If we let
o
5
() w’ w -u.!
. -f dw J3/z("’) J -I/Z(u)
6 hd ’
o w -a
then

e

s et et o e A SN RN s AN S

s i A LA WA 0 B o a1 e
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The evaluation of I 5 proceeds in a rnanner similar to the one used for

I Thus

1.

Qo /
(w) J, ,,(w) de J (2wcos 8)dw
Rel,_;:‘/- 32 ‘/2 =%—/r080d0 &
“o

wlu -G

a ww

/2
‘ 1
cos 0 dof/ 3 J,;- (2a cos 6)
A /2 fEcosd o2 I

w/2
= -17 / de | sixzxéio;z%s ) _ cos (2a cos 0)]
a”

A

2o
(g Fyle) - 3 Igz] = 271 f T (t)at - 23 (2a)]

/2
T o(w) J; o (w)d W J_ (2wcos Q) d
Im15=f 3/2“ 1/20) w:-i-/cosd@? 2% °
[o]

" - (")
wva-w “o o wla“-w

1r/2
-o8 ¥ 4v
(2a cos 0)

But

l/?"[z Zsmz+—(1 - cos z)]

832,-324%) =

Therefore,

/2

_ 1 T (1 -cos(2acos@)]
Imls- ;:Zf do [GCOBO sin{2a cos 0) + OB ]

B

o, < R I

o AR i 0 I B TR AT BSNS4SRI A
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Qe

= —la- 5, (%) + L Fy(a)]

2a
-a - 28 (Zn)+—/ So(t)dt]

b

A

1
= Lo
4:12

Ao

Similarly

o w/2

~ dw T, (w)d (w) J,(2wcos 0)cw
Rel =/ ¥z, -2 =3fcos?.0do 1 :
6 ™
o

w2
= = [ cos 20 dOV_ Vet JI/Z(ZacosO)
COBU
wLZ
- -;‘./ cos 20 do %in(2acos@) _ 2 F,(a)
I 2a cos @
where
n/\Z
_ - 3in{2a cos &)
F3(o.) -j ces 2@ 3cos 0 de
o

Since F3(0) = 0 and

therefore

w/2
F%(a) f cos 20 cos(2a cos09)do = - % JZ(Zo) y
/‘p

2a a
F,(a) v (a)da = - };/ i,(t)at = - {-] J (t) dt + 3 3 (2a)
o
20
ssid Rel, = 5[ J (dt+ 3 I, (2a)

o

i 4 M § Vi3 10 8

%
4
|
|

S ¥ S
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On the other hand

a /2 a

dwJ, o(w) T, /5(w) J, (Zwcos @) 4O
ImI, = 2 == ) 5‘/- cos 20 dof 1 "
6 ™
o o

C b az-w

a -w
w/2
= 2 [ cos 20 [1 - cos(2acos@)] d@
v 2a cos @
o
=/2
N %' [ 1 'IZSinzox‘Ll ~cos{2acoe0)] a0 -‘Z—[Fz(a)-ZF4(a)]
' ‘Jo 2acos @ Ta
n/2
- ! -
where F4(u) = / sinze {1 - cos(2acos0)] do
~/° 2cos80

Again F (0) = 0

w/2
_ L2, . - :
F;(rn) -f 8in” @ 8in (2a cos 0) dO = yvm Sl(Zu) s
(o]
therefore
_ %@ s, (t)at

F4la) =ij —t
o

If the recurrence formula for the Struve function is usedz7

z 8'(z) = -vS8 (z) +z Sv_l(z)

2a
we have Fyla) = }'f[f S,(t)dt - S,(2a)]
()
2a
Consequently Im 16 = 21; [ ZSI(Za) -f So(t) dt ]
o

. AL it i N o VIR SIS
]

i R s a0 G
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Combining 1

and 16 , We obtain

= e [I.- -I]
an’ 5 76

2a
= = {{;,1:'1-1?:1L —12)/ I (0t - 3 J,(2a) - —5 I (2)]
aa 40" . 2

o

+i['1'rl'&'+i—(%+;:1'f)‘/?

1 1 N
So(t) dt - -Q—SI(ZQ) - ;“7 SO(ZQ)J
o

The next integral to bz considered is

=
w

2
wd wz .13/2 (wa)
(1-=)
2
w -k

a 1/ 2 k 3
1 1 1/ 2 .2 2
= :n—zf d(;) w -k J3/Z (wa)
o

With an integration by parts

But

therefore

o' 2
7 Jyalwa)

- lZaofg——-—————" T lwa) Tplwa) de + | 2 |
=3 ® Jypalwd) J3pplwa) dw + -
aa -/o A 1/ma_k2

J,.(2)
B3p2(2) = '%Li_ + 302

. % 422 J3z/z(wa) dis ® Y2 k2 Iyp03) 3 5(wa) do
= —z [3 -2* - 23
aa ‘[ w ‘/o W
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2
gl do S30, - <21 -1
> 3 aa‘Z‘ 772
o w -k
and
- 1 D
I, = = > 2 I7 4 2
ad
where

=1

f a Yl x* .L,-(ua)J/‘(wa) do RV

=j ‘n. J3/Z(m) .ol/q\w’ Gw
w
o

But it is easy to show that

2a 71
1 - 1
17 = ng Jo(t) dt +1[?a' + E So(t) d\'ﬁ]
(+] (o]

Therefore when I2 and 17 are combined, we find that

2a
s it [age s dyaga - s
aa 4a o ° 8a °

24
+il2 =+ L0 +i-z~ Jf S (t) di - -B-EZ S,i2a) - =5 (2a)]
o o

The last integral, I4 , is8 directly relatzd to 1, as follows

~|
n
oo
]
[§]}

I =j'° do_ Jyalea)plua) 1f Ty2@) Jp()
o (o]

3
v 2 Z (wa) me -a

Therefore

4aa

2a
I, = —l—z [i—fJ(t)dt-ZJ (Za.)]+1[—u+ fS(t)dt-ZS (2a)]
(+]

o

i~

-




TR164 -30-

Finally, by substituiing the integrais I, , I,, I,, I 4 nto the function

l’ Z’ 3.\
P (a) Q (a) and R (), we obtain
_wdad |, 111 1M1, . .a 11,6111
Fla)= "= (l2-F )l - T g )2 +i3-134 15 3)
Q a a
22
s " U U 11 1 I 11 1
.c(t) t] +1‘_T1;—+-—w-a-f‘(z-—8—;7) SO‘ZQ)-T;SI(?A)

(o]

2.3 ) 2 |
- +- )/ J (t) dt]
a 3 o

4a a 2a A :

O
g
)
e
"

E
NP
——
g,

[V}
1
N'"
e
~
o
-
&
]
ein
[
[
—
g
+
_—
[~}
]
v
-

+i[:%“-+_-w?a- +(3-:—£)s°(za) - %5 (20)

b b

2a
tla-2 L 4 l)fS(t)dt]]
s z_nT A o .

a . ;
° i

- 3

uza3[ 11 1 a 51 1 a.F :

R(a) = :;-z-i[(l+-§:-z) Jo(zu)i'EJl(Zd)'f('z-za--E;é-‘)/ Jo(t)dt] !
A !

0 i 11 2 1 Q 19-1\ i

tilgg - qma tU g 2 Sl g 5{% |
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cal aperiures which is appropriate to small values of ka will be derived.

In this appendix, a form of the iransmission coefficieni ior the ellipti-

When the expansions (36) of tce functions F(xj and G({x) are substi-

tuted into {(35), and the integrxtions witk respect to @ are carried out term

-31-
Appendix B

by term, we find that

where F‘O {e)

and

Rz(e)

R4(e)

Lie) = zHs [3-e

1,(e)
e

K(e)

i

-
-

1]

3 (
b?‘u

23- 1R (e) + R,(e) (ka)® + R () (ka)* + - -

4k~a

]
+i[I0e) + Lye) (ka)” + I (e) (ka)? + - ..

-4 o5 . - - e
— [E{e) - K{e)]
3e

5 Kle) - 25 [K(e) - E(e)]
15

-4 s 3

35 Ele} + —— [E(e) - E(e)]
35e
!

Fos [16-10e

eccentricity = 1/ 1 - ‘3_5 )z

complete elliptic integral of the first kind

z+3e4]

/2
de

[m

28

]| e A0 i . UGS AT S

il el bl b S R B 0

; *;i.,,;a B gk 2N

2
#
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Tlr+opPe? s ixpiet +1

il

1:3:5)206 + ._’]

E(e) = complete elliptic integral of thc second kind
w2
= ;rl-ez:inzo dse
o
4 6
_ 1,2 2 13,2 e ,1°3-5.2e _
= 2[1-(3)7e"- 79" F-{rg) 7 ]
w/2 .
. do _ 11 4 _ d K
Rie) = > 2wz -z—zz;;-[ex(e)] = -e" gz (D
Jo (1 -e“sin“9) R P
= Tlie(hrisel e Ehdset e33R0 4
w2 e
14
E(e):f (1-e"-in20)3/2do=-e3[3f%ﬂde+ 3
o )
1-3,2 *3:52 3
- %[H(%)z -3 ez‘”i- )2 3 e4*(1, .5) .566
Lg¢31'3572 3 8, ,,1-3-5-7-.9 2 3 _10 . 1
‘2408 S57° T'Z&owsi0c 79 :
Substitution of I into (32) gives
2 4,.....
8at a i[_lo+lzc +tle” + ]

t=5 % 2 32 T2 3
RE+2R R a“ +(RS+2R R )a” +(Ig+2R,R )a’+ - -

or

4
¢ = %:7 (2)[Ayle) + Ayte)a? + A (e)at+....]
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21

+3w 0
where A, (e) =
° ¥ RZ(e)
2 2R, (e)
+3n 2
A,le) = - [I,{e) - - 1]
2\® BT—Ro(e) 2 K, (e) o
2
2 2R, {2) 3R, (e) - 2R, (e)R (e)
+3n 2 2 0 4
A, (e) = [I,{e) - 1,4+ I ]
4 snoz(e) 4 Eozei 2 Rz(e) 0
0
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